Hominy Swamp Stream Restoration

2003 Annual Monitoring Report

- Delivered to: NCDENR/Ecosystem Enhancement Program 1619 Mail Service Center Raleigh, NC 27699-1619
- Prepared by: Biological & Agricultural Engineering Water Resources Research Institute North Carolina State University Campus Box 7625 Raleigh, NC 27695

March, 2004

2003 Hominy Swamp Creek Monitoring Abstract

Hominy Swamp Creek was restored through the North Carolina Wetlands Restoration Program (NCWRP). The objectives of the project are to:

- 1.) Establish an stable dimension, pattern and profile on 2230 feet of Hominy Swamp Creek
- 2.) Improve habitat within Hominy Swamp Creek
- 3.) Establish an riparian buffer along Hominy Swamp Creek
- 4.) Incorporate this project into a watershed wide management plan

This is the 2nd year of the 5-year monitoring plan for Hominy Swamp Creek.

Project Name	Hominy Swamp Creek
Designer's Name	KCI Associates of North Carolina, P.A. Landmark Center II, Suite 200 4601 Six Forks Road Raleigh, NC 27609
Contractor's Name	Unknown
Project County	Wilson County, North Carolina
Directions to Project Site	From Interstate I-264 take business 264 through the City of Wilson. Business 264 is also Raleigh Road continue on raleigh road until you reach Ripley Road. Head North on Ripley Road the site is on the right side (east) as soon as you turn of Raleigh Road.
Drainage Area	5.4 sq. mi.
USGS Hydro Unit	3020203020040
NCDWQ Subbasin	03-04-07 Neuse River Basin
Project Length	2,232 Linear feet
Restoration Approach	2,232 ft of priority 1 Natural Channel Design (dimension, pattern, and profile) with urban constraints
Date of Completion	September, 2001
Monitoring Dates	May, 2002; November, 2003

Table 1A. Background Information

Results and Discussion

Overall, while the majority of the stream is functioning well and holding grade, the stream has areas of concern and areas of immediate need. Table 2 shows a summary of monitoring measurement results. Overall the project is performing well. Channel dimension, pattern, and profile are similar to as-built conditions with the exceptions of some limited areas of bank slumping. Vegetation is not succeeding to levels required for mitigation credit. Placed structures are holding grade and functioning well.

Table 2. Summary of Channel Conditions

DIMENSION	Hominy	Hominy Swamp		Hominy Swamp		' Swamp	Hominy	' Swamp
	Cross-secti	Cross-section #1		Cross-section #2		Cross-section #3		on #4
	Riffle		Ri	Riffle		ool	Pool	
	2002 2003		2002	2003	2002	2003	2002	2003
Bankfull Cross-sectional Area	62.3	87.2	53.1	53.9	76.3	64.9	88.3	107.5
Bankfull Width	25.0	24.6	21.6	18.3	31.8	33.1	23.5	26.8
Bankfull Mean Depth	2.5	3.5	2.5	3.0	2.4	2.0	3.8	4.0
Bankfull Max Depth	3.6	6.8	3.8	4.2	6.0	5.5	6.0	6.8

PATTERN	Hominy Swamp			Hominy Swam	ıp	Hominy Swam	He	Hominy Swamp		
	Design			As-built 2001		2002				
	Minimum Maximum Median		Minimum Maximum	Median	Minimum Maximum	Median	Minimum	Maximum	Median	
Meander Wave Length	n 182 255 N/A		Not Reported		Not Reported		115	227	155	
Radius of Curvature	47	63	N/A	Not Reported		Not Reported		33	76	56
Beltwidth	N/A	N/A	85	Not Reported		Not Reported		32	69	46

PROFILE	He	ominy Swar	np	Hominy Swan	np	Hominy Swam	He	Hominy Swamp		
	Design			As-built 200	l	2002				
	Minimum Maximum Median			Minimum Maximum	Median	Minimum Maximum	Median	Minimum	Maximum	Median
Riffle Length	Not Reported			Not Reported	1	Not Reported		15	53	23
Riffle Slope	N/A	N/A	0.15%	Not Reported	1	Not Reported		0.02%	0.60%	0.19%
Pool Length	35 49 N/A		Not Reported	Not Reported			30	73	52	
Pool to Pool Spacing	91	128	N/A	Not Reported	1	Not Reported		64	178	107

SUBSTRATE		Hominy	Swamp	Hominy	Swamp	Hominy	Swamp	Hominy Swamp		
		Cross-secti	on #1	Cross-secti	on #2	Cross-secti	on #3	Cross-section #3		
		Rif	fle	Rif	fle	Po	ool	Pool		
		2002	2002 2003		2003	2002	2003	2002	2003	
	d50	0.54	0.54 0.29		0.17	0.22	0.26	0.17	0.22	
	d85	2.00	0.58	0.63	0.49	13.65	5.88	3.74	0.62	

VEGETATION	Quad 1 -	Hominy	Quad 2 -	Quad 2 - Hominy		Quad 3 - Hominy		Hominy	Quad 5 -	Quad 5 - Hominy	
	Observed	Observed Planted*		Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*	
Tree Stratum (stems/acre)	4080	520	5520	400	200	200	120	120	3120	200	
Shrub Stratum (% cover)	0.5	n/a	7	n/a	56	n/a	1	n/a	37.5	n/a	
Herb Stratum (%cover)	147	n/a	78	n/a	24.5	n/a	87	n/a	104	n/a	

* Planted value represents number of stems observed alive that were planted.

The following areas of concern should be monitored closely and considered for repair as suggested:

Hominy Swamp Creek

- Easement Limits
 - NCWRP should work with landowners to ensure easement limits are maintained by the park maintenance workers
- Areas with bank slumping
 - Bank slumping has been noted at two locations on the stream on the right bank at STA. 6+50 for approximately 15 ft and on the left bank at STA. 1+10 for approximately 25 ft
 - Overland flow may need to be routed away from areas that show signs of bank erosion and slumping
- Areas lacking stream feature
 - The entire length of restored stream has on four existing riffle features, but as it can be observed from the as-build longitudinal profile there were not may riffles that showed up in the as-build survey
- Vegetation
 - Planting select trees in critical areas where there is localized erosion.
 - The site could benefit from larger containerized trees both for bank stability and aesthetics, although mitigation requirements are currently being met.
 - It is recommended to stake in areas where erosion is problematic, particularly on outside meander bends.
 - Although invasive vegetation has not consumed this project site, there are several species that should be controlled now, most importantly Chinese wisteria and Chinese privet.
 - Mowing should be halted within the specified limits of the riparian buffer.

Photos

The following are photographs of typical sections and areas of concern throughout the project.

Typical Pool

Typical Riffle

Typical Vegetation Plot.

Issue Photo 2. Heavy recreational use within the buffer.

Issue Photo 4 station XX+XX. Overland flow resulting in bake erosion.

Issue Photo 1. Mowing within easement limits to top of channel bank.

Issue Photo 3. Urban debris blockage.

Issue Photo 5 station XX+XX. Bank slump

Table of Contents

2003 Lyle	e Creek Monitoring Abstract	i
Table of	Contents	v
Tables an	nd Figures	v
	ACKGROUND INFORMATION	
1.1	Goals and Objective	1
1.2	Project Location	1
1.4	Project Description	2
2.0 Y	EAR 2003 RESULTS AND DISCUSSION	7
2.1	Vegetation	7
2.1.1	Results and Discussion	7
2.2	Morphology	
2.2.1	Results and Discussion	8
2.3	Areas of Concern	1
2.4	Photo Log	2

Tables and Figures

Figure 1. Project Location	3
Figure 2. Watershed Ortho-photo	
Figure 3. Plan view of As-built conditions	
Figure 4. Plan view of 2003 overlain on As-built	5
Table 1. Summary of Results	
Figure 5. Hominy Swamp Profile	

1.0 BACKGROUND INFORMATION

The background information for this report is referenced from previous monitoring reports conducted by KCI, Inc. The following was excerpted from 2002 KCI monitoring report:

Project planning was initiated in 1999 for the implementation of an urban stream restoration project in Wilson, North Carolina (Figure 1).

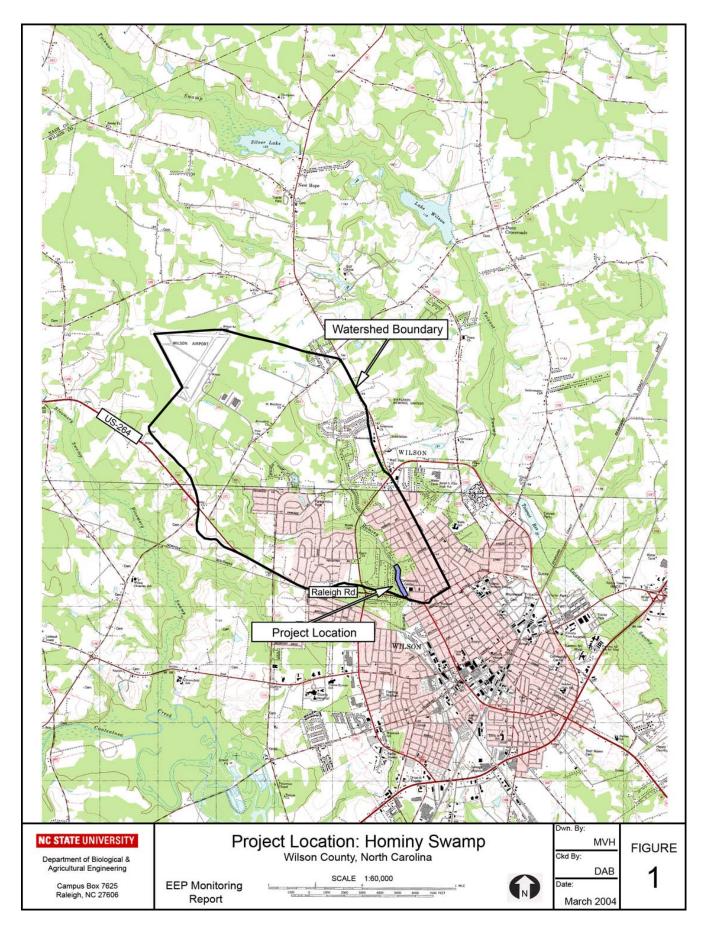
Phase I of the project consisted of the detailed analysis of the 5.4 square mile portion of the Hominy Swamp Creek watershed (located within USGS 14-digit Hydrologic Unit Code 03020203020040, NCDWQ Subbasin 03-04-07 of the Neuse River Basin) that contributes drainage to the project site. The watershed analysis, including the assessment of over 7 miles of stream channel, was conducted for the purpose of developing a clear understanding of existing system characteristics. The resulting Watershed Management Plan identified opportunities to improve water quality and overall system functions including targeted strategies such as wetland/riparian buffer preservation, stormwater BMP development/retrofitting, stream restoration, and community education.

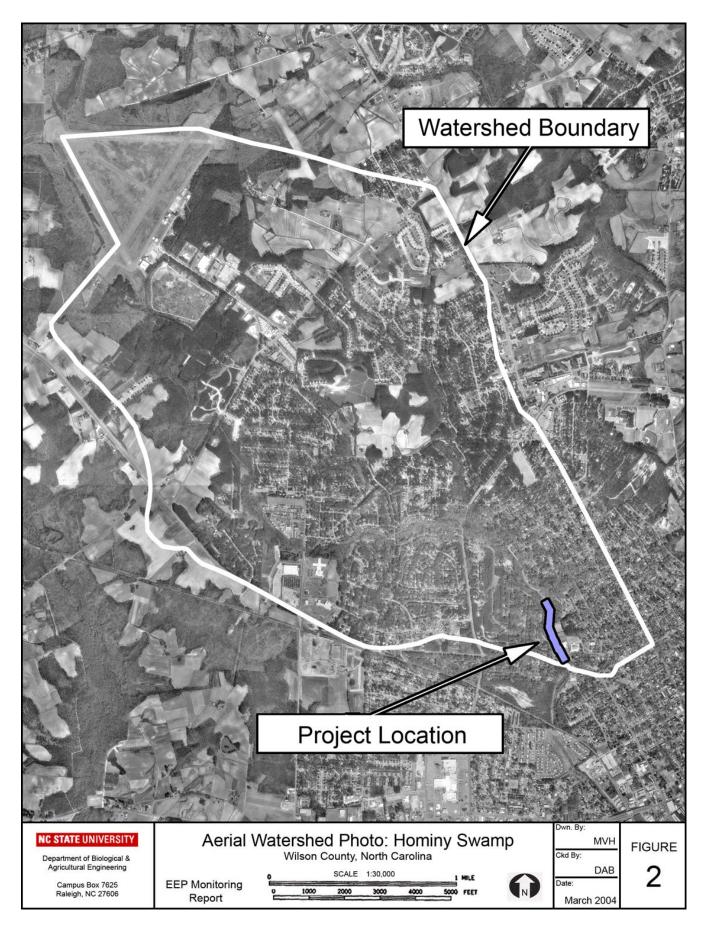
Following coordination with local leaders and citizens groups, Phase II of the project was initiated and focused on the restoration of approximately 2,000 linear feet of degraded stream within the Wilson Recreation Park. Detailed environmental assessments and engineering studies were conducted and design plans and documents were prepared to facilitate the stream and riparian buffer restoration. Implementation of the project was completed in September 2001.

The restoration of this portion of Hominy Swamp Creek, located within the Wilson City Recreational Park, was conducted to correct identified system deficiencies including severe bank erosion, channel widening, and the loss of aquatic habitat resulting from stream channelization, the loss of riparian vegetation, and watershed development. The goal of the project was to develop a stable stream channel with reduced bank erosion, efficient sediment transport, enhanced warm water fisheries, and improved overall stream habitat and site aesthetics. Implementation of the project was completed in September 2001.

1.1 Goals and Objective

The goals and objectives of this project are as follows:


- 1.) Restore 2,232-linear feet of Hominy Swamp Creek through a priority 1 natural channel design approach.
- 2.) Establish a riparian zone surrounding restored section of Hominy Swamp Creek.
- 3.) Improve the habitat within the channel and the riparian zone.
- 4.) Incorporate this project into a watershed wide management plan.


1.2 Project Location

This project is located within the city limits of Wilson, North Carolina. From Raleigh, follow Interstate I-264 east take business 264 through the City of Wilson. Business 264 is also Raleigh Road continue on Raleigh road until you reach Ripley Road. Head North on Ripley Road the site is on the right side (east) as soon as you turn of Raleigh Road.

1.4 Project Description

A previously straight through the Wilson City Recreational Park, Hominy Swamp Creek was restored using channel dimension, pattern, and profile modifications and the establishment of riparian zone adjacent to the creek. Channel profile is maintained through the use of log and rock cross vanes. Channel pattern is maintained through the use of log single vanes and vegetation along the channel banks. Due to multiple urban constraints, pattern modifications were limited through the project.

Figure 3. Plan view of As-built conditions

(To be attached) showing all structures with station numbers showing vegetation permanent plots showing permanent cross-sections and benchmarks showing vegetation plots showing monitoring gauges

Figure 4. Plan view of 2003 overlain on As-built (To be attached)

2.0 YEAR 2003 RESULTS AND DISCUSSION

Year 2003 monitoring results are shown for Hominy Swamp Creek Monitoring.

2.1 Vegetation

Using the <u>Draft Vegetation Monitoring Plan for NCWRP Riparian Buffer and Wetland</u> <u>Restoration Projects</u>, 4 vegetation monitoring plots were randomly located within the riparian buffer of the Hominy Swamp project. No reference area was studied; therefore no comparisons could be made to reference conditions.

2.1.1 Results and Discussion

Vegetation within the riparian buffer of Hominy Swamp Creek is overall considered successful. Because the buffer is so narrow on this project, plots were modified linearly. The upper portion of the restoration site was well vegetated with live stakes and naturally regenerating native species. Native herbaceous plants were growing well, although fescue and honeysuckle were prevalent in these areas. Shrubs, especially those from live stakes, were diverse and healthy. Planted bare root trees averaged 460 stems per acre for the upper two plots. Some of the larger planted trees had apparently been j-rooted during initial planting. Several of these trees had fallen over and inspection of the roots revealed that they had been poorly installed. This appeared to have led to root instability and susceptibility to wind throw. Vegetation in the lower portion of the project was healthy, although numbers of planted bare root trees were lower; average was 200 stems per acre. It appeared that much of the buffer in this region had been mowed and the tree mortality was high as a result. Natural regeneration was also a main vegetation component of this area. Shrubs from stakes again were thriving along the streambanks. Herbaceous plants were less diverse but still dense. Extrapolation from the four plots resulted in an overall average of approximately 330 planted trees per acre for this restoration site. If natural regeneration is included with planted trees, the number is increased to an average of approximately 3230 trees per acre. Both of these estimates are based on a diverse mix of species as well. Natural regeneration obviously plays an important role in the restoration of this site.

Invasive plant species on the site included *Lonicera japonica* (Japanese honeysuckle), *Wisteria sinensis* (Chinese wisteria), *Ligustrum sinense* (Chinese privet) and *Microstegium vimineum*. Chinese wisteria is choking much of the adjacent forest in the upper portion of the project. Several vines were noted within the riparian corridor. Because this plant spreads extensively by rhizomes, it is only a matter of time before it infests the riparian area. Chinese privet was sporadically spread throughout the area, no where abundant. Japanese honeysuckle and microstegium were prevalent throughout.

Recommendations include planting select trees in critical areas where there is localized erosion. The site could benefit from larger containerized trees both for bank stability and aesthetics, although mitigation requirements are currently being met. It is recommended to stake in areas where erosion is problematic, particularly on outside meander bends. Although invasive vegetation has not consumed this project site, there are several species that should be controlled now, most importantly Chinese wisteria and Chinese privet. Mowing should be halted within the specified limits of the riparian buffer.

2.2 Morphology

Restored channel dimension, pattern, profile and substrate were examined during the 2003 monitoring.

2.2.1 Results and Discussion

Hominy Swamp Creek is sand bed channel and therefore the dune and anti-dune characteristics of sand-bed sediment transport should be considered. The channel profile along Hominy Swamp Creek has not shown any significant changes in between monitoring periods. The channel profile along Hominy Swamp Creek has also not shown any significant changes in between the as-build profile and this year's monitoring. The stream profile of by the monitoring and as-build show very few riffle features in the stream. The Mitigation report mentions that the design was to build a riffle/pool sequence plan form, but this intent was not displayed on the as-build survey. The number of defined riffles in the bedform has decreased from 6 in the 2001 as-build, to 4 in 2003. The average riffle slope has not change and many of the riffles have been transformed into runs which are more defined in low gradient systems.

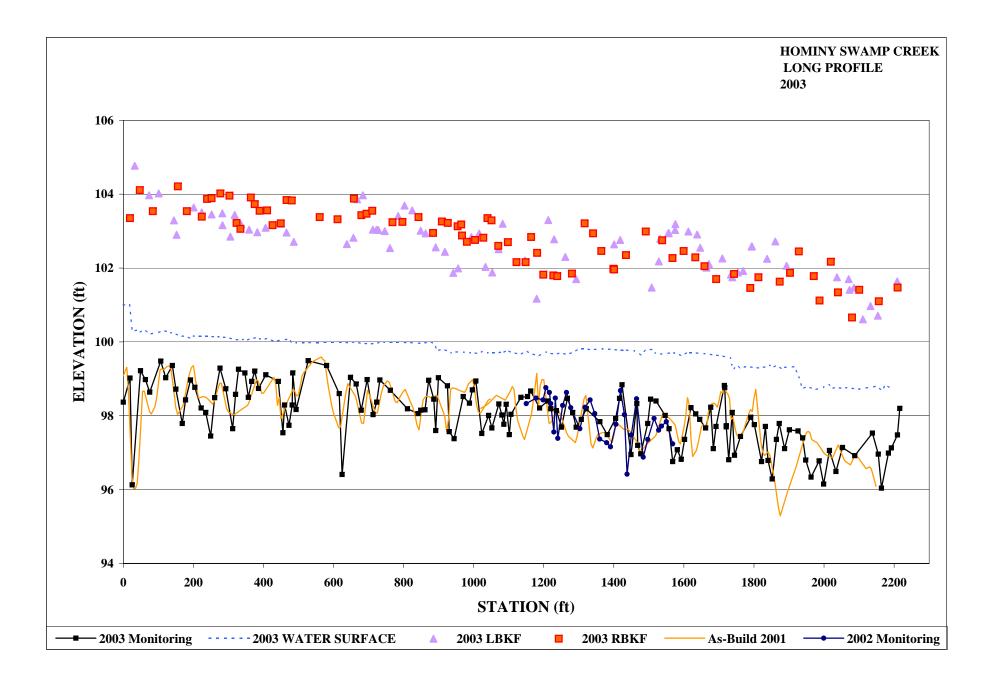
KCI cross section results were recalculated using NCSU techniques for consistency purposes. Data was examined but field identified features were retained. The same datum was used for bankfull for each year's monitoring results. Cross-sections 1 was not field located; they have been re-established and will be monitored in the re-established location and the original location if it can be field located during future monitoring periods. Channel cross-sections 1 and 2 along Hominy Swamp Creek have not shown any significant change in cross-sectional area, this is partly due to cross-section 1 being relocated. Cross-section 3, a pool, has partially filled in with sediment the cross-sectional area has decreased from 76 to 65 square feet. Cross-section 4, a pool has enlarged from 88 to 107 square feet since construction.

Channel substrate in the riffle sections continue have very little change. The D50 decreased on a average from 0.28mm to 0.23mm over the four cross sections. In riffle 1, the D50 decreased from 0.54mm to 0.29mm, and in riffle 2 the D50 decreased from 0.20mm to 0.17mm. The riffles are maintaining a medium sand substrate. The pool cross-section D50 has increased slightly, from 0.20mm to 0.23mm, but not a significantly. A possible cause of decrease in particle size is measurement technique. It is not know if previous surveyors used similar sampling technique. Future monitoring should better evaluate channel substrate.

Channel pattern appears to have been maintained since construction. A few of the outside meander bends are experiencing slight migration through bank slumping but no excessive migration is evident and no shoot cut-offs are apparent. The pattern aligns closely with the as-build pattern (Figure 4). Channel banks throughout Hominy Swamp Creek remains fairly stable, with the exception of two spot areas of bank slumping. Slumping is likely the result of the lack of deep rooting vegetation, steep stream banks, high stream velocities near the channel toe, and possible overland flow into the channel.

Table 1. Summary of Channel Conditions

DIMENSION	Hominy Swamp		Hominy	Hominy Swamp		Swamp	Hominy Swamp	
	Cross-secti	Cross-section #1		Cross-section #2		Cross-section #3		on #4
	Rit	Riffle		Riffle		Pool		ool
	2002 2003		2002	2003	2002	2003	2002	2003
Bankfull Cross-sectional Area	62.3	87.2	53.1	53.9	76.3	64.9	88.3	107.5
Bankfull Width	25.0	24.6	21.6	18.3	31.8	33.1	23.5	26.8
Bankfull Mean Depth	2.5	3.5	2.5	3.0	2.4	2.0	3.8	4.0
Bankfull Max Depth	3.6	6.8	3.8	4.2	6.0	5.5	6.0	6.8


PATTERN	He	ominy Swan	np	Hominy Swam	р	Hominy Swam	Ho	Hominy Swamp		
	Design			As-built 2001		2002				
	Minimum Maximum Median M		Minimum Maximum	Median	Minimum Maximum	Median	Minimum	Maximum	Median	
Meander Wave Length	182 255 N/A		Not Reported		Not Reported	l	115	227	155	
Radius of Curvature	47	63	N/A	Not Reported		Not Reported	l	33	76	56
Beltwidth	N/A			Not Reported		Not Reported	Not Reported		69	46

PROFILE	He	ominy Swan	np	Hominy Swan	np	Hominy Swam	He	Hominy Swamp		
	Design			As-built 200	l	2002				
	Minimum Maximum Median			Minimum Maximum	Median	Minimum Maximum	Median	Minimum	Maximum	Median
Riffle Length	Not Reported			Not Reported	1	Not Reported	l	15	53	23
Riffle Slope	N/A N/A 0.15%			Not Reported	1	Not Reported	l	0.02%	0.60%	0.19%
Pool Length	35 49 N/A		Not Reported	Not Reported		l	30	73	52	
Pool to Pool Spacing				Not Reported	1	Not Reported		64	178	107

SUBSTRATE	Hominy	Swamp	Hominy	Swamp	Hominy	Swamp	Hominy Swamp		
	Cross-section	on #1	Cross-section	on #2	Cross-section	on #3	Cross-section #3		
	Rif	fle	Rif	fle	Ро	ol	Pool		
	2002	2002 2003		2003	2002	2003	2002	2003	
d50	0.54	0.54 0.29		0.17	0.22	0.26	0.17	0.22	
d85	2.00	0.58	0.63	0.49	13.65	5.88	3.74	0.62	

VEGETATION	Quad 1 -	Hominy	Quad 2 -	Hominy	Quad 3 -	Hominy	Quad 4 -	Hominy	Quad 5 -	Hominy
	Observed	Planted*								
Tree Stratum (stems/acre)	4080	520	5520	400	200	200	120	120	3120	200
Shrub Stratum (% cover)	0.5	n/a	7	n/a	56	n/a	1	n/a	37.5	n/a
Herb Stratum (%cover)	147	n/a	78	n/a	24.5	n/a	87	n/a	104	n/a

* Planted value represents number of stems observed alive that were planted.

2.3 Areas of Concern

The following areas of concern should be monitored closely and considered for repair as suggested:

- Easement Limits
 - NCWRP should work with landowners to ensure easement limits are maintained by the park maintenance workers
- Areas with bank slumping
 - Bank slumping has been noted at two locations on the stream on the right bank at STA. 6+50 for approximately 15 ft and on the left bank at STA. 1+10 for approximately 25 ft
 - Overland flow may need to be routed away from areas that show signs of bank erosion and slumping
- Areas lacking stream feature
 - The entire length of restored stream has on four existing riffle features, but as it can be observed from the as-build longitudinal profile there were not may riffles that showed up in the as-build survey
- Vegetation
 - o Planting select trees in critical areas where there is localized erosion.
 - The site could benefit from larger containerized trees both for bank stability and aesthetics, although mitigation requirements are currently being met.
 - It is recommended to stake in areas where erosion is problematic, particularly on outside meander bends.
 - Although invasive vegetation has not consumed this project site, there are several species that should be controlled now, most importantly Chinese wisteria and Chinese privet.
 - Mowing should be halted within the specified limits of the riparian buffer.

2.4 Photo Log

Hominy Swamp Photo Log

Location #1 Downstream

Location #2 Upstream

Location #2 Downstream

Location #3 Upstream

Location #3 Downstream

Location #4 Upstream

Location #4 Downstream

Location #5 Upstream

Location #5 Downstream

Location #6 Upstream

Location #6 Downstream

Location #7 Upstream

Location #7 Downstream

Location #8 Upstream

Location #8 Downstream

Location #9 upstream

Location #9 Downstream

Location #10 upstream

Quad 1

Tree Stratum <u>Species</u>	<u>Height (cm)</u>	Diameter (mm) Radi	<u>us (m</u> m)	<u>Σ X-sec. (mm²)</u>	<u>Rel. x-sec (%)</u>	<u>Density</u>	<u>Rel. Density (%)</u>	<u>Rank (Importance)</u>	Average
Quercus phellos	88		5	78.5	74.9	8	7.8		41.35127
Quercus prieitos	86		5	113.1	74.9	0	7.0	1	41.33127
	158	24	12	452.4					
	126 29		7 6.5	153.9 132.7					
	69		6	113.1					
	109		9	254.5					
	40 Total	12	6 57.5	113.1 1411.4					
Pinus taeda	78	12	6	113.1	6.7	70	68.6	2	37.64636
i indo tabua	13	0.5	0.25	0.2	•		0010	-	01101000
	13		0.25	0.2					
	13 13		0.25 0.25	0.2 0.2					
	13	0.5	0.25	0.2					
	13 13		0.25 0.25	0.2 0.2					
	13		0.25	0.2					
	13 13		0.25 0.25	0.2 0.2					
	13		0.25	0.2					
	13	0.5	0.25	0.2					
	13 13		0.25 0.25	0.2 0.2					
	13	0.5	0.25	0.2					
	13	0.5	0.25	0.2					
	13 13		0.25 0.25	0.2 0.2					
	13	0.5	0.25	0.2					
	13 13		0.25 0.25	0.2 0.2					
	13		0.25	0.2					
	13	0.5	0.25	0.2					
	13 13		0.25 0.25	0.2 0.2					
	13	0.5	0.25	0.2					
	13 13		0.25 0.25	0.2 0.2					
	13		0.25	0.2					
	13		0.25	0.2					
	13 13		0.25 0.25	0.2 0.2					
	13	0.5	0.25	0.2					
	15 15		0.25 0.25	0.2 0.2					
	15		0.25	0.2					
	15 15		0.25 0.25	0.2 0.2					
	15		0.25	0.2					
	15	0.5	0.25	0.2					
	15 15		0.25 0.25	0.2 0.2					
	15	0.5	0.25	0.2					
	15 15		0.25 0.25	0.2 0.2					
	15	0.5	0.25	0.2					
	17	' 1	0.5	0.8					
	17 17		0.5 0.5	0.8 0.8					
	17	· 1	0.5	0.8					
	17 17		0.5 0.5	0.8 0.8					
	17	' 1	0.5	0.8					
	17 17		0.5 0.5	0.8 0.8					
	17	' 1	0.5	0.8					
	22	2	1	3.1					
	22 22		1	3.1 3.1					
	22	2	1	3.1					
	22 22	2	1 1	3.1 3.1					
	22	2	1	3.1					
	22 22	2	1	3.1					
	22	2	1	3.1 3.1					
	22	2	1	3.1					
	22 19		1 2	3.1 12.6					
	Total		36.5	125.7					
Betula	nigra 28	3	1.5	7.1	4.6	5	4.9	5	4.752584
Dotate	23	0.5	0.25	0.2		0	4.0	Ŭ	
	23	0.5	0.25	0.2					

	22	1	0.5	0.8				
	232	10	5	78.5				
Total		3	7.5	86.8				
Liquidambar styraciflua	10	0.5	0.25	0.2	0.2	11	10.8	4 5.511924
	10	0.5	0.25	0.2				
	10	0.5	0.25	0.2				
	16	1	0.5	0.8				
	27	1	0.5	0.8				
	27	1	0.5	0.8				
	12	0.5	0.25	0.2				
	12	0.5	0.25	0.2				
	8	0.5	0.25	0.2				
	8	0.5	0.25	0.2				
	17	1	0.5	0.8				
Total			3.75	4.5				
Liriodendron tulipifera	12	0.5	0.25	0.2	0.1	5	4.9	6 2.492638
	12	0.5	0.25	0.2				
	8	0.5	0.25	0.2				
	17	1	0.5	0.8				
	8	0.5	0.25	0.2				
Total		3	1.5	1.6				
Cercis canadensis	13	0.5	0.25	0.2	0.0	1	1.0	7 0.495403
Total			0.25	0.2				
Fraxinus sp.	27	1	0.5	0.8	13.5	2	2.0	3 7.749815
	150	18	9	254.5				
Total			9.5	255.3				
Overall Total				1885.3	100.0	102.0	100.0	
Total Trees per acre						4080		
Planted trees per acre						520		
•								

Planted trees per acre

Shrub Stratum <u>Species</u>	<u>Cover (%)</u>	<u>Rel. cover (%)</u>	<u>Density</u>	<u>Rel. Density (%)</u>	<u>Rank (Importance)</u>
Corylus americana	0.5	100.0	1	100	1
Herb Stratum <u>Species</u> Festuca sp. Lonicera japonica	<u>Cover (%)</u> 100 20	Rel. cover (%) 68.0 13.6			
Panicum virgatum Polygonum sp. Artemisia sp.	20 2 15 10	13.6 1.4 10.2 6.8	5 3		
Tota	l 147	100.0			

Quad 2

Tree Stratum									
Species	Height (cm)	Diameter (mm)	Radius (mm)	ΣX-sec. (mm ²)	<u>Rel. x-sec (%)</u>	Density	Rel. Density (%)	Rank (Importance)	<u>Average</u>
Liquidambar styracifl				7.1	23.7	28	20.3	1	22.01771
	3			50.3 19.6					
	2	8 3	1.5	7.1					
	3			19.6					
	3 1			12.6 3.1					
	1			3.1					
	1			0.8					
	1			0.8 7.1					
	1			3.1					
	1	6 2	1	3.1					
	1			0.8 0.8					
	1			0.8					
	1		0.5	0.8					
	1			0.8 0.8					
	1			0.8					
	1	2 1	0.5	0.8					
	1			0.8					
	1			0.2 0.2					
	1			0.2					
	1	0 0.5	0.25	0.2					
	1 3		0.25	0.2 38.5					
Total		0 /	3.5	30.5 184.0					
			0.05		42.0	405	70.4		50.00004
Pinus sp.	1			0.2 0.2	43.2	105	76.1	4	59.66031
	1	2 0.5	0.25	0.2					
	1			0.2					
	1			0.2 0.2					
	1			0.2					
	1			0.2					
	1			0.2 0.2					
	1		1	3.1					
	1			3.1					
	1		1	3.1 3.1					
	1			3.1					
	5	0 10	5	78.5					
	5 5			78.5 78.5					
	2			78.5					
	2	2 3	1.5	7.1					
	2			7.1					
	2	2 3 9 0.5		7.1 0.2					
		9 0.5	0.25	0.2					
		9 0.5 9 0.5		0.2					
		9 0.5 9 0.5		0.2 0.2					
		9 0.5	0.25	0.2					
	1			0.2					
	1			0.2 0.2					
	1	1 0.5	0.25	0.2					
	1	1 0.5	0.25	0.2					
	1			0.2 0.2					
	1	1 0.5	0.25	0.2					
	1	1 0.5	0.25	0.2					
	1 1			0.2 0.2					
	1		0.25	0.2					
	1	1 0.5	0.25	0.2 0.2					
	1		0.25	0.2					
	1	1 0.5 2 0.5		0.2 0.2					
	1	2 0.5	0.25	0.2					
	1	2 0.5	0.25	0.2					
	1 1	2 0.5 2 0.5	0.25 0.25	0.2 0.2					
	1	2 0.5	0.25	0.2					
	1	2 0.5	0.25	0.2					
	1 1	2 0.5 2 0.5		0.2 0.2					
	1	2 0.5	0.25	0.2					
	1	2 0.5	0.25 0.25	0.2 0.2					
	1	2 0.5	0.25	0.2					

	12		0.25	0.2				
	12 12		0.25 0.25	0.2 0.2				
	12	0.5	0.25	0.2				
	12 12		0.25 0.25	0.2 0.2				
	29		0.25	12.6				
	29	4	2	12.6				
	29 10		2 0.25	12.6 0.2				
	10		0.25	0.2				
	10	0.5	0.25	0.2				
	10 10		0.25 0.25	0.2 0.2				
	10		0.25	0.2				
	10	0.5	0.25	0.2				
	10 10		0.25 0.25	0.2 0.2				
	10		0.25	0.2				
	10		0.25	0.2				
	10 10		0.25 0.25	0.2 0.2				
	10	0.5	0.25	0.2				
	10		0.25	0.2				
	10 10		0.25 0.25	0.2 0.2				
	10	0.5	0.25	0.2				
	10 10		0.25 0.25	0.2 0.2				
	10		0.25	0.2				
	10		0.25	0.2				
	10 10		0.25 0.25	0.2 0.2				
	10	0.5	0.25	0.2				
	10		0.25	0.2				
	10 10		0.25 0.25	0.2 0.2				
	10	0.5	0.25	0.2				
	10 10		0.25 0.25	0.2 0.2				
	10		0.25	0.2				
	10		0.25	0.2				
	10 10		0.25 0.25	0.2 0.2				
	10	0.5	0.25	0.2				
	10		0.25	0.2				
	10 10		0.25 0.25	0.2 0.2				
	10	0.5	0.25	0.2				
Total	10	0.5	0.25	0.2 335.0				
Liriodendron tulipifera	10 10		0.25 0.25	0.2 0.2		4	2.9	2 1.537973
	10		0.25	0.2				
	15	1	0.5	0.8				
Total				1.4				
		10	0					0 10 70 10 1
Platanus occidentalis	256	18	9	254.5	32.8	1	0.7	3 16.78401
Total				254.5				
Overall Total Total Trees per acre				774.8	100.0	138.0 5520	100.0	100
Planted trees per acre						400		
Ohmuh Ohmuhana								
Shrub Stratum <u>Species</u>	Cover (%)	Rel. cover (%)	Density	Rel. Density (%)	Rank (Importance)			
Sambucus canadensi Cornus amomum	0.5 3		1 18	3.6 64.3	4			
Aronia arbutifolia	0.5		2	7.1	3			
Rosa multiflora	0.5		2	7.1	3			
Ligustrum sinense Salix nigra	0.5 2		3 2	10.7 7.1	2			
	7		28	100	Ū			
Herb Stratum	Cover (9/)		nk (Importance)					
<u>Species</u> Unknown	<u>Cover (%)</u> 5	Rel. cover (%) 6.4	ank (Importance) 3					
Panicum clandestinur	50	64.1	1					
Aster sp. Polygonum sp.	0.5 2		6 5					
Wisteria sp.	0.5		6					
Lonicera japonica	0	2.6	5					
	2							
Juncus Panicum virgatum	2 15 3	19.2	2 4					
Juncus	15	19.2 3.8	2					

Quad 3

Tree Stratum									
Species	Height (cm)	Diameter (mm)	Radius (mm)	ΣX-sec. (mm²)	<u>Rel. x-sec (%)</u>	Density	Rel. Density (%)	Rank (Importance)	<u>Average</u>
Quercus sp.	146	16	8	201.1	32.9	3	60.0	1	46.46163
	115			63.6					
	129	15	7.5	176.7					
Total				441.4					
Nyssa sp.	117	19	9.5	283.5	21.1	1	20.0	3	20.57411
Total				283.5					
Betula nigra	221	28	14	615.8	45.9	1	20.0	2	32.96426
Total Overall Total Total Trees per acre				615.8 1340.7	100.0	5.0 200	100.0		100
Planted trees per acre						200			
Shrub Stratum									
Species	<u>Cover (%)</u>	Rel. cover (%)	Density	Rel. Density (%)	Rank (Importance)				
Sambucus canadensi	1	1.8		36.8	2				
Cornus amomum	30			39.5	1				
Salix nigra	25			23.7	3				
Liesth Ctreature	56	100	38	100					
Herb Stratum	0	D -1 (0/)							
<u>Species</u> Grass sp.	<u>Cover (%)</u> 2		Rank (Importance) 2						
Unknown	2								
Polygonum sp.	0.5								
Diodia virginiana	20								
Total	24.5	100.0							

Quad 4

Tree Stratum <u>Species</u>	Height (cm)	Diameter (mm) Radiu	<u>us (mm)</u>	<u>ΣX-sec. (mm²)</u>	<u>Rel. x-sec (%)</u>	Density	Rel. Density (%)	Rank (Importance)	Average
Quercus phellos	145		8	201.1	69.5	4	5.1	2	37.29868
	125		9	254.5					
	13 20		0.25 2.5	0.2 19.6					
	Total	5	2.5 19.75	475.4					
Pinus taeda	22 22		0.5 0.5	0.8 0.8	0.2	58	74.4	1	37.29426
	22		0.5	0.8					
	22		0.5	0.8					
	22		0.5	0.8					
	22		0.5	0.8					
	22 22	1	0.5	0.8					
	22		0.5 0.5	0.8 0.8					
	22		0.5	0.8					
	22		0.5	0.8					
	22	: 1	0.5	0.8					
	24		0.5	0.8					
	24		0.5	0.8					
	24 24		0.5 0.5	0.8 0.8					
	24		0.5	0.8					
	24		0.5	0.8					
	24	1	0.5	0.8					
	24		0.5	0.8					
	24		0.5	0.8					
	24 24		0.5 0.5	0.8 0.8					
	24		0.5	0.8					
	24		0.5	0.8					
	20		0.5	0.8					
	20		0.5	0.8					
	20		0.5	0.8					
	20 20		0.5 0.5	0.8 0.8					
	20		0.5	0.8					
	20		0.5	0.8					
	20	1	0.5	0.8					
	20		0.5	0.8					
	20 20		0.5 0.5	0.8					
	20		0.5	0.8 0.8					
	20		0.5	0.8					
	20	1	0.5	0.8					
	20		0.5	0.8					
	20		0.5	0.8					
	20 20		0.5 0.5	0.8 0.8					
	20		0.5	0.8					
	21		0.5	0.8					
	21		0.5	0.8					
	21		0.5	0.8					
	21		0.5	0.8					
	21 21		0.5 0.5	0.8 0.8					
	21		0.5	0.8					
	21		0.5	0.8					
	21	1	0.5	0.8					
	21		0.5	0.8					
	21		0.5	0.8					
	21 21		0.5 0.5	0.8 0.8					
		1	0.0	v.o					
	19		0.5	0.8					

Hominy Swamp Stream Restoration Wilson County, NC Quad 4 Continued

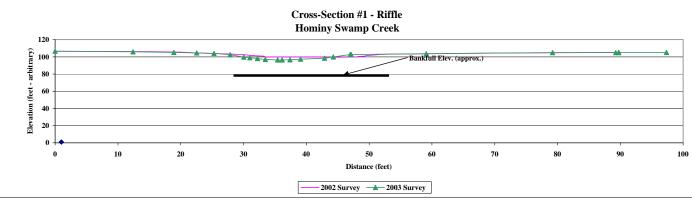
Quad 4 Continued								
Platanus occidentalis	117	15	7.5	176.7	29.2	3	3.8	4 16.49983
	37	2	1	3.1				
	79	5	2.5	19.6				
Total		15	11	199.5				
Liquidambar styraciflua	22	1	0.5	0.8	0.5	8	10.3	5 5.372108
	7	0.5	0.25	0.2				
	7	0.5	0.25	0.2				
	17	1	0.5	0.8				
	14	0.5	0.25	0.2				
	14	0.5	0.25	0.2				
	14	0.5	0.25	0.2				
	21	1	0.5	0.8				
Total			2.75	3.3				
Liriodendron tulipifera	5	0.5	0.25	0.2	0.1	3	3.8	6 1.966119
	8	0.5	0.25	0.2				
	4	0.5	0.25	0.2				
Total		1.5	0.75	0.6				
Taxodium distichum	32	1	0.5	0.8	0.1	1	1.3	7 0.698414
Total			0.5	0.8				
Acer rubrum	33	2	1	3.1	0.5	1	1.3	3 0.870581
Total			1	3.1				
Overall Total				684.3	100.0	78.0	100.0	
Total Trees per acre						3120		
Planted trees per acre						200		

Shrub Stratum <u>Species</u>	<u>Cover (%)</u>	Rel. cover (%)	Density	Rel. Density (%)	Rank (Importance)
Cornus amomum	20	53.3	41	52.6	1
Salix nigra	15	40.0	18	23.1	2
Sambucus canadensis	2	5.3	8	10.3	4
Aronia arbutifolia	0.5	1.3	11	14.1	3
total	37.5	100	78	100	

Herb Stratum

Species	Cover (%)	Rel. cover (%)	Rank (Importance)
Unknown grass	90	86.5	1
Aster sp.	1	1.0	3
Krigia sp.	12	11.5	2
Sorghastrum nutans	1	1.0	3

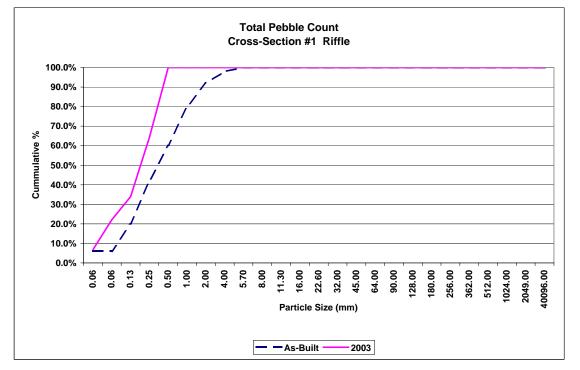
104


Total

100.0

Appendices

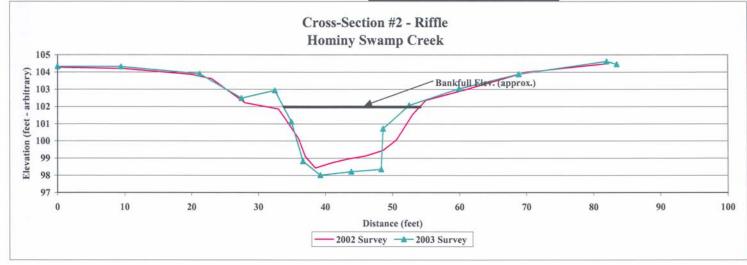
- A. Methods
 - 1. Vegetation
 - 2. Morphology
- B. Vegetation data
 - 1. Listed by plot
 - 2. Species, number and age
 - 3. Analysis of planted vs. natural recruitment
- C. Morphology Data
 - 1. Cross-section data and plotted (DONE)
 - 2. Longitudinal data and plotted (DONE)
 - 3. Pebble count data and plotted (DONE)
 - 4. Pattern (DONE)


Project Name Cross Section Seature Date Crew	#1 Riffle 11/3/03	amp Creek elspach, Clin	ton					
	2002	▲ ·		2003	-			
	2002 Survey			2003 Surve	v			and the set
Station	Elevation	Notes	Station	Elevation		a company of the second		
0	106.4		0	106.52			and the start of	Contraction of the
10	106.29		12.4	105.79		A Start Start Start Start		
15	106.09		18.9	105.14		States and a second	2 New Star	
20	105.42		22.55	104.65	Left Pin	A CARLES AND A CARLES		un State
23	104.43	BKF	25.31	104.05	BKF	Start Start		
28	103.23		27.88	102.58				Constant 1
30	102.42		30.03	99.64				- 1 - 1
32	101.21		31	98.91			1 1 1 2 2 2	
33.2	100.8		32.24	97.99		1 North States		
33.5	99.94		33.47	96.9			and the second s	Sent Sold
36	99.93		35.45	96.38		ALL ACTION	and the second	
39	99.85		36.15	96.41		300	- A.S. /	3 N IV
42.8	99.68		37.39	96.65		at and	1	R ALLER
45	99.52		39.08	97.23			- 0	12 Martin
46.3	99.66		42.9	98.33			1	
48	99.99		44.3	99.88		40		C. Ket
48.3	100.49		47.0	102.65				
49.3	100.84		47.1	102.78		Photo o	f Cross-Section	#1 - Looking Dov
49.5	101.32		59.1	103.7				
51.7	102.73		79.2	105.02				
53	103.16		89.3	105.01			2002	2003
60	103.57	BKF	89.7	105.01		Area	62.3	87.2
70	104.38		89.8	105.04	BKF Field	Width	25.0	24.6
90	105.06		97.4	105.07		Mean Depth	2.5	3.5
					BKF	Max Depth	3.6	6.8
					Right Pin			

Project Name	Hominy Swamp Creek
Cross Section	#1
Feature	Riffle
Date	1/14/04
Crew	Shaffer, Bidelspach

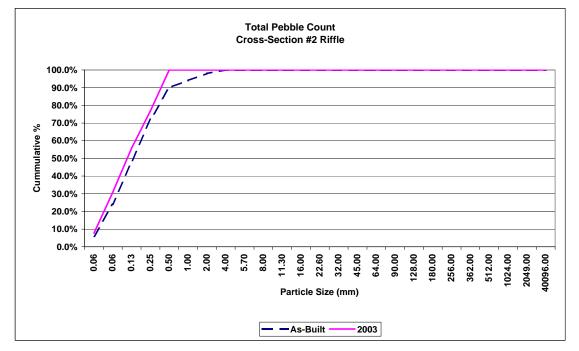
			As-Built			20	003		
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	3	6.0%	6.0%	0	4	6.8%	6.8%
	very fine sand	0.062	0	0.0%	6.0%	3	6	15.3%	22.0%
	fine sand	0.125	7	14.0%	20.0%	1	6	11.9%	33.9%
Sand	medium sand	0.25	11	22.0%	42.0%	16	2	30.5%	64.4%
	course sand	0.50	9	18.0%	60.0%	21	0	35.6%	100.0%
	very course sand	1.0	10	20.0%	80.0%	0	0	0.0%	100.0%
	very fine gravel	2.0	6	12.0%	92.0%	0	0	0.0%	100.0%
G	fine gravel	4.0	3	6.0%	98.0%	0	0	0.0%	100.0%
r	fine gravel	5.7	1	2.0%	100.0%	0	0	0.0%	100.0%
	medium gravel	8.0	0	0.0%	100.0%	0	0	0.0%	100.0%
a v	medium gravel	11.3	0	0.0%	100.0%	0	0	0.0%	100.0%
	course gravel	16.0	0	0.0%	100.0%	0	0	0.0%	100.0%
e	course gravel	22.6	0	0.0%	100.0%	0	0	0.0%	100.0%
1	very course gravel	32	0	0.0%	100.0%	0	0	0.0%	100.0%
	very course gravel	45	0	0.0%	100.0%	0	0	0.0%	100.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
Condie	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		50	100.0%		41	18	100.0%	

	d16	d35	d50	d85	d95
As-Built	0.16	0.32	0.54	2.00	3.93
2003	0.08	0.19	0.29	0.58	0.70



Project Name	Hominy Sw	amp Creek			1
Cross Section	#2				I
Feature	Riffle				I
Date	11/3/03				I
Crew	Shaffer, Bid	elspach, Cl	inton		
	2002			2003	
2	002 Survey			2003 Survey	7
Station	Elevation	Notes	Station	Elevation	Notes
0	104.27		0.0	104.33	
10	104.19		9.4	104.32	
20	103.86		21.2	103.91	
23	103.61		27.45	102.49	BKF
28	102.22	BKF	32.45	102.94	
33	101.86		34.92	101.12	
34	101.31		36.65	98.83	
36	100.14		39.24	98.02	
37	99.09		43.87	98.22	
38.5	98.43		48.31	98.36	
41	98.74		48.6	100.72	
43.5	98.97		52.51	102.08	
45.9	99.12		59.96	103.04	
48.6	99.45		68.85	103.89	
50.6	100.07		81.97	104.63	
53	101.54		83.47	104.47	
55	102.36	BKF			
61	102.99				
70	104				
82	104.49				

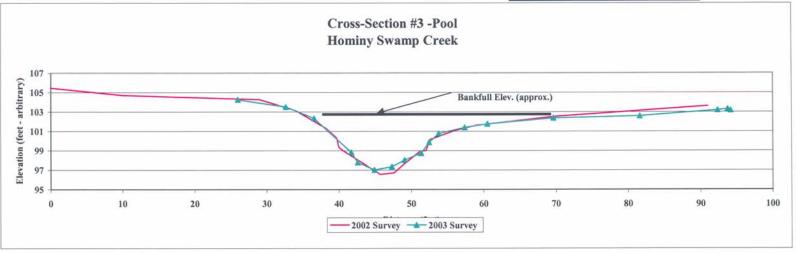
Photo of Cross-Section #2 - Looking Downstream


	2002	2003
Area	53.1	54.0
Width	21.6	18.3
Mean Depth	2.5	3.0
Max Depth	3.8	4.2

Project Name	Hominy Swamp Creek
Cross Section	#2
Feature	Riffle
Date	1/14/04
Crew	Shaffer, Bidelspach

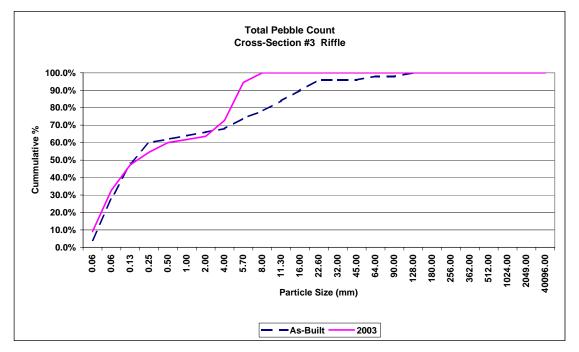
			As-Built			20	003		
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	3	6.0%	6.0%	0	4	7.7%	7.7%
	very fine sand	0.062	9	18.0%	24.0%	5	7	23.1%	30.8%
	fine sand	0.125	12	24.0%	48.0%	6	7	25.0%	55.8%
Sand	medium sand	0.25	12	24.0%	72.0%	9	2	21.2%	76.9%
	course sand	0.50	9	18.0%	90.0%	11	1	23.1%	100.0%
	very course sand	1.0	2	4.0%	94.0%	0	0	0.0%	100.0%
	very fine gravel	2.0	2	4.0%	98.0%	0	0	0.0%	100.0%
G	fine gravel	4.0	1	2.0%	100.0%	0	0	0.0%	100.0%
_	fine gravel	5.7	0	0.0%	100.0%	0	0	0.0%	100.0%
r	medium gravel	8.0	0	0.0%	100.0%	0	0	0.0%	100.0%
a v	medium gravel	11.3	0	0.0%	100.0%	0	0	0.0%	100.0%
	course gravel	16.0	0	0.0%	100.0%	0	0	0.0%	100.0%
e	course gravel	22.6	0	0.0%	100.0%	0	0	0.0%	100.0%
1	very course gravel	32	0	0.0%	100.0%	0	0	0.0%	100.0%
	very course gravel	45	0	0.0%	100.0%	0	0	0.0%	100.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
CODDIe	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		50	100.0%		31	21	100.0%	

	d16	d35	d50	d85	d95
As-Built	0.08	0.14	0.20	0.63	1.88
2003	0.07	0.11	0.17	0.49	0.67


Hominy Swamp Creek	
#3	
Pool	
11/3/03	
Shaffer, Bidelspach, Clinton	
	#3 Pool 11/3/03

2	2002 002 Survey			2003 2003 Survey		
Station	Elevation	Notes	Station	Elevation	Notes	
0	105.46	110103	26.0	104.27	110100	
10	104.7		32.7	103.51		
29	104.26		36.58	102.35		
34	103.14		41.71	98.85		
38.2	101.32		42.6	97.8		
39.7	100.3		44.92	97.04		
40	99.34		47.33	97.36		
40.6	98.99		49.07	98.05		
43	97.87		51.34	98.75		
45.7	96.56		52.44	99.87		
47.6	96.71		53.76	100.78		
49	97.62		57.38	101.4		
51.3	98.98		60.52	101.78		
52	99		69.67	102.38		
52.5	100.13		81.63	102.59	BKF	
56	101.07		92.4	103.19		
59	101.63		93.8	103.3		
70	102.53	BKF	94.2	103.17		
80	103.03					
91	103.6					

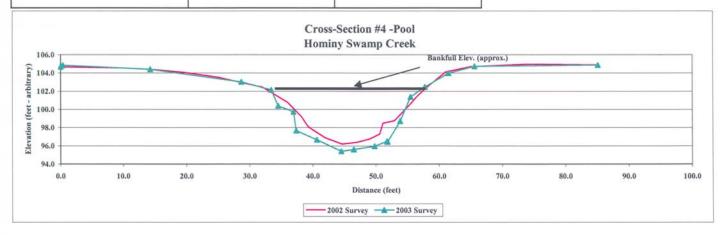
Photo of Cross-Section #3 - Looking Downstream


	2002	2003
Area	76.3	64.9
Width	31.8	33.1
Mean Depth	2.4	2.0
Max Depth	6.0	5.5

Project Name	Hominy Swamp Creek		
Cross Section	#3		
Feature	Pool		
Date	1/14/04		
Crew	Shaffer, Bidelspach		

			As-Built			20	003		
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	2	4.0%	4.0%	0	5	9.1%	9.1%
	very fine sand	0.062	12	24.0%	28.0%	6	7	23.6%	32.7%
	fine sand	0.125	10	20.0%	48.0%	4	4	14.5%	47.3%
Sand	medium sand	0.25	6	12.0%	60.0%	4	0	7.3%	54.5%
	course sand	0.50	1	2.0%	62.0%	3	0	5.5%	60.0%
	very course sand	1.0	1	2.0%	64.0%	1	0	1.8%	61.8%
	very fine gravel	2.0	1	2.0%	66.0%	1	0	1.8%	63.6%
G	fine gravel	4.0	1	2.0%	68.0%	5	0	9.1%	72.7%
	fine gravel	5.7	3	6.0%	74.0%	12	0	21.8%	94.5%
r	medium gravel	8.0	2	4.0%	78.0%	3	0	5.5%	100.0%
a	medium gravel	11.3	3	6.0%	84.0%	0	0	0.0%	100.0%
v	course gravel	16.0	3	6.0%	90.0%	0	0	0.0%	100.0%
e	course gravel	22.6	3	6.0%	96.0%	0	0	0.0%	100.0%
1	very course gravel	32	0	0.0%	96.0%	0	0	0.0%	100.0%
	very course gravel	45	0	0.0%	96.0%	0	0	0.0%	100.0%
	small cobble	64	1	2.0%	98.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	98.0%	0	0	0.0%	100.0%
Conne	large cobble	128	1	2.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		50	100.0%		39	16	100.0%	

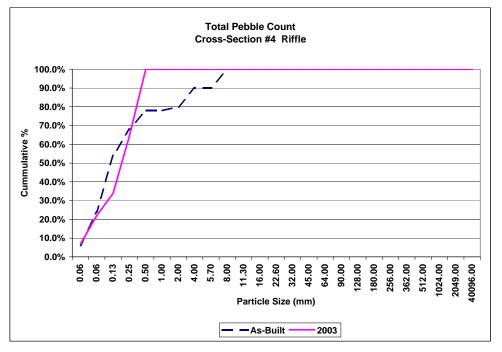
	d16	d35	d50	d85	d95
As-Built	0.08	0.13	0.22	13.65	25.97
2003	0.07	0.11	0.26	5.88	7.08


Project Name	Hominy Swamp Creek	
Cross Section	#4	
Feature	Pool	
Date	11/3/03	
Crew	Shaffer, Bidelspach, Clinton	

	2002 Survey		100.07.00	2003 Survey	
Station	Elevation	Notes	Station	Elevation	Note
0	104.67		0.0	104.67	
10	104.55		0.4	104.84	
15	104.38		14.3	104.4	
20	104.04		28.7	103.03	
25	103.54		33.42	102.16	
30	102.75		34.5	100.41	
32	102.46	BKF	36.9	99.74	
36	100.78		37.36	97.67	
38.2	99.22		40.64	96.67	
39.2	98.16		44.51	95.41	
39.8	97.84		46.5	95.61	
42	96.89		49.79	95.97	
44.63	96.21		51.74	96.5	
47	96.4		51.85	96.45	
49	96.77		53.8	98.72	
50.6	97.31		55.46	101.38	
51.1	98.5		57.73	102.46	BKF
52.9	98.77		61.47	103.99	
55.5	100.66		65.6	104.74	
56.5	101.45		85.1	104.88	
58	102.41	BKF			
61	104.11				
65	104.7				
74	104.97				
85	104.9				

Photo of Cross-Section #4 - Looking Downstream

	2002	2003
Area	88.3	107.5
Width	23.5	26.8
Mean Depth	3.8	4.0
Max Depth	6.0	6.8



Project Name	Hominy Swamp Creek
Cross Section	#4
Feature	Pool
Date	1/14/04
Crew	Shaffer, Bidelspach
Cross Section #1	

Brush Creek

Brush Creek	As-Built					20	003	-	-
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	3	6.0%	6.0%	1	0	2.0%	2.0%
	very fine sand	0.062	9	18.0%	24.0%	0	6	11.8%	13.7%
	fine sand	0.125	15	30.0%	54.0%	4	12	31.4%	45.1%
Sand	medium sand	0.25	7	14.0%	68.0%	11	3	27.5%	72.5%
	course sand	0.50	5	10.0%	78.0%	9	0	17.6%	90.2%
	very course sand	1.0	0	0.0%	78.0%	5	0	9.8%	100.0%
	very fine gravel	2.0	1	2.0%	80.0%	0	0	0.0%	100.0%
G	fine gravel	4.0	5	10.0%	90.0%	0	0	0.0%	100.0%
r	fine gravel	5.7	0	0.0%	90.0%	0	0	0.0%	100.0%
a	medium gravel	8.0	5	10.0%	100.0%	0	0	0.0%	100.0%
a v	medium gravel	11.3	0	0.0%	100.0%	0	0	0.0%	100.0%
e v	course gravel	16.0	0	0.0%	100.0%	0	0	0.0%	100.0%
e	course gravel	22.6	0	0.0%	100.0%	0	0	0.0%	100.0%
1	very course gravel	32	0	0.0%	100.0%	0	0	0.0%	100.0%
	very course gravel	45	0	0.0%	100.0%	0	0	0.0%	100.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
Conne	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAI	2 / %of whole count		50	100.0%		30	21	100.0%	

	d16	d35	d50	d85	d95
As-Built	0.08	0.13	0.17	3.74	8.25
2003	0.10	0.16	0.22	0.62	1.12

Project 1	Nam Hominy Swamp Creek	
Task	Channel Pattern Measurements	
Date	11/13/03	
Date Crew	Shaffer, Bidelspach, Clinton	

Hominy Swamp Creek					
Radius of Curvature	Meander Wavelength	Channel Beltwidth			
33.1	115.1	31.2			
36.3	123.5	31.2			
38.1	123.6	33.9			
40.3	129.2	34.0			
51.4	138.1	35.8			
53.4	145.6	38.4			
53.4	146.3	40.3			
54.6	152.4	45.6			
54.8	155.4	45.7			
55.5	157.1	45.8			
57.8	158.5	51.7			
58.5	163.3	52.0			
58.9	191.3	52.7			
59.1	199.2	63.4			
60.1	204.9	65.3			
63.5	222.0	66.0			
67.2	227.0	68.7			
69.0					
76.2					
108.7					
33.1	115.1	31.2	n		
76.2	227.0	68.7	n		
55.5	155.4	45.7	me		

min max median

Project Name	Hominy Swamp
Task	Feature Slope and Length Calculations
Date	11/13/04
Crew	Shaffer, Bidelspach, Clinton

2003 Data

Hominy Swamp Creek Riffle

Hominy Swamp Creek					
Riffle		Bed	Water		
Station	Change	elevation	elevation	change	slope
349		97.66	100.07		
368	18.82	97.56	100.04	0.03	0.16%
549		99.49	99.98		
600	51.11	99.36	99.97	0.01	0.020%
908		99.03	99.8		
930	21.9	98.81	99.75	0.05	0.228%
1519		98.45	99.8		
1534	15.09	98.4	99.71	0.09	0.60%

25 55 168 219	30			min	max	median
168	30				шал	meuran
		143	Length	15	51	20
219			Slope	0.02%	0.60%	0.19%
217	51	79	Length	30.0	73.0	51.5
247			Spacing	64	178	107
299	52	64				
311						
371	60	162				
473						
504	31	151				
624						
669	45	82				
706						
754	48	81				
832						
885	53	93				
925						
990	65	106				
1260						
1332	72	178				
1641	73	107				
1744						
1775	31	135				
990 1260 1332 1568 1641 1744	72 73	178 107				

PROFILE	Hominy Swamp Creek			Hominy Swamp Creek			
	As-built - 2001			2003			
	Minimum	Maximum	Median	Minimum	Maximum	Median	
Riffle Length	Not Reported			15	51	20	
Riffle Slope	N/A	N/A	0.15%	0.02%	0.60%	0.19%	
Pool Length	35	49	N/A	30.0	73.0	51.5	
Pool to Pool Spacing	91	128	N/A	64	178	107	